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Abstract - Time series analysis and forecasting has become a major tool in many applications in water 
resources engineering and environmental management fields. The effects of climate change and variability 
on water demand in the 21st century makes the time series analysis of rainfall, a major replenishing source 
of water, more imperative than ever before. The major challenge of water demand management is the ability 
to effectively estimate the contribution of rainfall to the water budget of any given basin. Among the most 
effective approaches for time series analysis is the Box-Jenkins’ Auto regressive Integrated Moving Average 
(ARIMA) model. In this study, the Box-Jenkins methodology was used to build an Auto regressive Moving 
Average (ARMA) model for the annual rainfall data taken from Kaduna South meteorological station within 
the Lower Kaduna catchment for a period of 47 years (1960 – 2006). From the analysis, the mean annual 
rainfall was 1385.2mm with a standard deviation of 313.8mm and coefficient of variation of 0.23 (low 
variation). The range for the period of study is 1407mm.The ARMA model identified is ARMA (1,1) which 
has Pearson Correlation Coefficient (R2) of 0.969 and residual ACF and PACF that indicated no pattern. 
The model is therefore adequate and appropriate for the forecast of future annual rainfall values in the 
catchment which can help decision makers establish priorities in terms of water demand management. 
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Introduction 

Time series can be defined as an ordered sequence 
of values at equally spaced time intervals [1]. Time series 
models are mathematical representation of the time series. 
Time series models have been the basis for the study of 
behaviour of a process over a period of time. The 
application of time series models are manifold, including 
sales forecasting, weather forecasting, and inventory studies 
etc. In decisions that involve factor of uncertainty of the 
future, time series models have been found to be one of the 
most effective methods of forecasting. Most often, future 
course of actions and decisions for such processes will 
depend on what would be the anticipated results. The need 
for these anticipated results has encouraged organizations to 
develop forecasting techniques in order to be better prepared 
to face the seemly uncertain future. The motivation to study 
time series models is twofold: 

 
1. To obtain an understanding of the underlying forces and 

structure that produced the observed rainfall data in the 
Lower Kaduna catchment of Kaduna state of Nigeria. 

 
 

2. To fit a model: this can be used for forecasting, 
monitoring or even feedback and feed forward control. 

Time series analysis can be divided into two main 
categories depending on the type of model that can be fitted. 
The two categories are: 
1. Kinetic Model: The data here is fitted as: =  

the measurements or observations are seen as function 
of time. 

2. Dynamic Model: The data here is fitted as: 
   = . 

 
Many methods and approaches for formulating 

forecasting models are available in literature. This study 
exclusively deals with Autoregressive Integrated Moving 
Average (ARIMA) time series models. These models are 
well described by Box et al (2008). The ARIMA models 
allow the manager who has only historic data of say rainfall, 
to forecast future values without having to search for other 
related time series data, for example, temperature. It also 
allows for the use of several time series to explain the 
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behaviour of another time series if these other time series 
are correlated with variable of interest and if there appears 
to be some cause for correlation. 

Box-Jenkins (ARIMA) modelling has been 
successfully applied in various water resources and 
environmental management applications [5]. Time series 
analysis has become a major tool in hydrology. It is used for 
building mathematical models to generate synthetic 
hydrologic data, to forecast hydrologic events, to detect 
trends and shifts in hydrologic records and to fill in missing 
data and extend records. Time series analysis was used by 
Langu (1993) as cited by Nail and Momani (2009) to detect 
changes in rainfall and runoff patterns to search for 
significant changes in the components of a number of 
rainfall time series. 

 
Material and Methods 
 
Data: The data for this study were obtained from Kaduna 
State Water Board, Hydro meteorological section and they 
include daily rainfall depths in millimeters for the period 
1960 to 2006. The annual rainfall depths are the summation 
of the daily rainfall. The processed data for the time series 
analysis in the study area is, therefore, the annual rainfall 
depths. Descriptive statistical analysis and homogeneity test 
were then performed on these data to verify the integrity of 
the data. For the ARMA model building, the moving 
average (MA) values of these data were used. 
  
Study Area: The Lower Kaduna catchment is located 
between latitude 10° 15’ and 10° 45’ North and between 
longitude 6° 15’ and 7° 45’ East with an area of 1547 square 
kilometers. It is within the highland climatic zone of Nigeria 
with a mean annual rainfall of 1230mm.The rainy season is 
between May and October when about 80% of the annual 
rainfall occurs. It is drained by River Kaduna. 

Water resources in Lower Kaduna catchment are 
limited and with deteriorating quality due to urban 
development. Therefore, it is important to know the future 
water resources budget in order to help decision makers 
improve their decisions by taking into consideration the 
available and future water resources. Modelling and 
forecasting for future water resources have become possible 
with advances in forecasting methodologies such time series 
analysis.  

 
Method of Analysis: Models used for the study of the 
variations in hydro-meteorological variables from year to 
year have not been based on the analysis of causal factors 
but on the decomposition of the time series into its basic 
components by means of the dynamic series model given as:     

 

 

Where:  = trend due to the action of permanent 
factors; 

 = cyclic variations due to the action of rhythmical 
factors; 

 = stochastic components assumed to follow an 
autoregressive moving average Process; 

 = random component due to the action of random 
factors. 

There is an obvious connection between these components 
of the series and the actual physical processes or situations. 
Thus, the general trends reflect the general direction of the 
dynamics of the phenomenon, the cyclic variations or 
component give the periodical fluctuations about the trend 
or mean; and the stochastic and the random components or 
variations are as a result of the impacts of random factors on 
the natural development of the phenomenon[4]. 
 
Trend: The general trend of the hydro-meteorological series 
can be ascribed to climate change or the influence of man’s 
activities such as agriculture, deforestation and urbanization 
[4] on the hydrologic system. The extraction of the trend 
component from the raw data series can be achieved by 
means of a polynomial fit given as:  

  
For parsimony, (that is, using a model with the 

fewest possible number of parameters and greatest number 
of degrees of freedom among all models for adequate 
representation) the trend can be extracted by means of the 
basic statistical model for linear trend given as: 

 , Where  = intercept,  

= slope of the regression line and  = random error 

component. The parameters and  are estimated using the 
least square method if the error terms are uncorrelated. The 
principal complication with this method in the case of 
climate data is usually that the data are autocorrelated, in 
other words, the terms cannot be taken as independent [7].   

       After the elimination of the trend component, 
the dynamic series becomes: 

  
In order to establish the general structure of the 

resulting series or residual series , the correlogram 

method is used. The autocorrelation coefficient , is 
determined as follows: 

  
Where N = the length of the time series, k =the 

difference between two values of the series expressed in 
time units, Rm = mean value of the series. 

The correlogram is obtained by graphical 
representation of the variations of   with k. If the data 

series is random, the computed value of is other than that 
due, only, to internal (random) variation of the series, the 
points of the correlogram being very close to the horizontal 
axis. The confidence limit (CL) corresponding to a given 
significant level is expressed as: 

 

, where  = standard normal deviate corresponding to the 

probability .  For  = 5%, the significant level  = 
1.645. 
Periodic Component 

The determination of the periodic component is 
achieved by means of a Fourier series of the form: 

 + , 

where n = the order of the harmonic corresponding to the 



Attah et al. Int. J. Res. Chem. Environ. Vol. 2 Issue 1 January 2012 (82-87) 
 

84 
 

period established by the analysis of the correlogram.  = 

the frequency of the oscillations.  = Fourier 
coefficients. The remainder of the dynamic series is given 
as: 

After eliminating the trend and periodic components from 
the original data series, the resulting series is a stochastic 
process which can be modelled by means of parametric 
models of an autoregressive moving average (ARMA) type 
[1, 4] . 

       The general structure of a non-stationary 
ARIMA type (p, d, q) model is given as: 

 =  +…………+  + - 

 -……….. -  , where d = difference order; 

 = parameters of the autoregressive process; = 
parameters of the moving average process; p= order of the 
autoregressive process; q = order of the moving average 
process; and  = current value of an independent random 

variable with zero mean and constant variance  (of the 
“white noise” type). 

When d = 0,  =   – , where  = the current 

value of the modelled series at moment t;  = parameter that 
determines the level of the process, in the case of stationary 
process  is the mean of the series. 

       The steps necessary for establishing the 
ARIMA type model to describe, optimally, the data series 
are: 

1. Estimation of the order p, q, and d of the model by 
the analysis of the autocorrelation (ACF) and partial 
autocorrelation  (PACF)functions; 

2. Determination of the parameters  by 
means of the maximum likelihood and least square methods; 
and  

3. Analysis of the structure of the residuals obtained 
after the application of the model in order to verify 
appropriateness of the chosen model. If the residuals 
obtained do not comply with the above mentioned criteria 
indicated for , the model should be re-analyzed. 

 
Results and Discussion 

The summary of the descriptive statistics of the 
annual rainfall data is presented in Figure 1below.From the 
figure, it can be inferred that the mean annual rainfall of 
Lower Kaduna catchment is 1385.2 mm and median is 1320 
mm. This indicates that the annual rainfall values are right 
skewed. The high standard deviation value can easily be 
correlated with the high range (1407mm) of the annual 
rainfall values. Fig. 1 

The range is the difference between the maximum 
and minimum annual rainfall values. The standard deviation 
and the range indicate the variability of the annual rainfall 
and hence denote how reliable the rainfall is in terms of its 
persistence as a constant and stable replenishing source. The 
p-value is less than 0.05 indicating that the data is non-
normal. 

       To test whether the annual rainfall data follow 
a normal distribution, the skewness and kurtosis were 

computed. Skewness measures symmetry or lack of 
symmetry. The skewness for normal distribution is zero. 
Negative value of skewness indicates left skewness while 
positive value indicates right skewness. Kurtosis is a 
measure of data peakness or flatness relative to normal 
distribution. The normal standard distribution has zero 
kurtosis. Positive kurtosis indicates a peaked distribution 
and negative kurtosis indicates flat distribution. The annual 
rainfall exhibits right skewness and peaked distribution as 
indicated in Figure 1.  
Homogeneity Test: A climate variable is said to be 
homogeneous when its variations are caused only by 
fluctuation in weather and climate. To test the homogeneity 
of the climate data time series, the “Run Test” was applied. 
The distribution of the number of Runs(R) approximates a 
normal distribution with the following mean  and 

variance  

          

 
The Test statistics  is defined 

as  for significant level 
of  

α = 0.01and α = 0.05. The Null Hypothesis of 
homogeneity is verified if  and 

   respectively. 
From the Run Test results, as presented in Table1, 

the Null hypothesis of homogeneity is not rejected. Table 1 
The plot of the original data, as shown in Figure 2, 

does not show any seasonal variation since the data is the 
annual rainfall total. Figure 1 

The auto correlation function (ACF) and the partial 
auto correlation function (PACF) plots of the original data 
,as shown in Figure3, indicate that the annual rainfall data is 
stationary and therefore does not require differencing 
(d=0).That is, the annual rainfall series is serially 
independent. 

From Figure3, it can be observed that there is only 
one significant pike in the PACF plot. This indicates that the 
auto regressive process would be of the order 1 (p=1) and 
the moving average process would also be of the order 1 
(q=1).Therefore, the appropriate ARIMA model to fit the 
annual rainfall data would be an ARIMA (1, 0, 1) model 
which is equivalent to ARMA (1, 1). 

After fitting the ARMA (1, 1) model, the model 
parameters were estimated from the following equation 
using the least sum-of- square of residuals method: 

 =   + -  or 

 
The model fit statistics are presented in Table 2, 

while the estimated model parameters and their significant 
levels are presented in Table3. The estimated coefficients 
are all statistically significant at 5% level. Table 2 ,3 

The model is validated by ACF and PACF plots of 
the residuals. A pattern less (white noise) ACF and PACF 
indicate a good fit.  From ACF and PACF plot, as shown in 
Figure 4, the ACF and PACF of the residuals have no 
pattern. Also, from Table 2,the Pearson product moment 
correlation coefficient (R2) which measures the linear 
association between individual pairs of forecasts and 
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observations is very high (0.969)( for a perfect fit R2 = 1.0). 
These indicate that the ARMA (1, 1) model identified is 
adequate for the forecast of future annual rainfall events in 
the study area. Figure 4 

 
Conclusion 

The ARMA (1, 1) model identified is adequate to 
represent the observed annual rainfall data and can be used 
to forecast future rainfall data. The ARMA (1, 1) model can 
be written as:   
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Table 1: Run Test 

 Annual Total Rainfall
Test Value 

Cases < Test Value 
Cases > = Test Value

Total Cases 
Number of Runs 

Z 
Aymp.Sig. (2-tailed) 

1320 
23 
24 
47 
19 

-1.472 
0.141 

 
Table 2: Model Fit Statistics 

Model Statistics

1 .969 .969 27.758 16 .034 1

Model
Ten Year Moving
Average Annual Total
Rainfall-Model_1

Number of
Predictors

Stationary
R-squared R-squared

Model Fit statistics

Statistics DF Sig.

Ljung-Box Q(18)
Number of

Outliers

 
 

Table 3: Model Parameter Estimates 
ARIMA Model Parameters

-17449.0 21796.890 -.801 .429

.969 .065 14.966 .000
-.600 .155 -3.869 .000
9.527 11.009 .865 .393

Constant

Lag 1AR
Lag 1MA

No
Transformation

Ten Year
Moving Average
Annual Total
Rainfall

Lag 0NumeratorNo
T f ti

Year

Ten Year Moving
Average Annual Total
Rainfall-Model_1

Estimate SE t Sig.
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Figure: 1 Descriptive Statistics of Annual Rainfall 
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Figure 2: Time Series Plot of Annual Rainfall 
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Figure 3: ACF and PACF Plots of Annual Rainfall 
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Figure 4: Residual ACF and PACF. 
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