

Research Paper

Surface Activation of Calcium Bentonite by Acid Treatment

Suryakanta Parida, Achyut Kumar Panda*

Department of Chemistry, Veer Surendra Sai University of Technology Burla, Odisha, INDIA

(Received 12th June2017, Accepted 26th June 2017)

Abstract: Calcium bentonite was treated with sulphuric acid of 3M concentration by mechanical stirring and thermal refluxing condition followed by calcination at 500°C for 1h. The physico-chemical characteristics of acidleachedcalcium bentonite were studied by different instrumental analytical techniques. The effect of thermo-acidic treatment is more pronounced as compared to mechano-acidic treatment. XRFand FTIR studies indicate that acid treatment leads to the removal of the octahedralAl³⁺ and other cations. XRD of acid treated calcium bentoniteinfer that acid treatmentwith mechanical stirring and heating provoked anamorphization of crystalline clay. Theacid treatment increased the Si/Al ratio, surface area and water content. Solids thus obtainedby acid treatments can be used as promising adsorbents and catalyst supports for acid catalysed reactions.

Keywords:Surface Activation, Calcium bentonite, acid treatment, adsorbent, catalyst

© 2017IJRCE. All rights reserved

Introduction

Solid acids are one of the important categories of heterogeneous catalysts used in many industrial chemical processes starting from the largest chemical process of catalytic cracking in petroleum refining to the synthesis of various fine chemicals owing to their high productivity, easy separation, reusability and ecofriendlyfeatures. Solid acid catalyst carries two types of acid sites such as Bronsted acidity and Lewis acidity. Bronsted acid sites of the solid acid can donate, or atleast partially transfera proton which becomes attached with surface anions and theLewis acid sites of the solid acid catalyst must be able to accept an electron pair. Some examples of solid acid catalysts are alumina, silicalite-I, chlorinated alumina, H-zeolites, hetero poly acid, niobic acid, solid phosphoric acid, sulfated zirconia, clay etc.^{1,2}.Among the different solid acid catalysts, clay materials are important class of natural occurring solid acid catalysts, which can function as both Bronsted and Lewis acids in their natural and ion-exchanged form and find diversified application in different environmentally benign green chemistrv³.

Clay is a fine grained natural rock or soil material that combines one or more clay minerals with traces of metal oxide and organic matter found abundantly on earth's crust. Chemically it consists essentially of hydrated silicates of aluminum. They have layered structure, where different layers of silica tetrahedra and hydrated alumina octahedra are bound together by some covalent and van-der Waal's forces. Among the different clay materials, bentonite is phyllosilicate clay consisting mostly of Montmorillonite.Bentonite usually forms from weathering of volcanic ash, mostly in the presence of water.For industrial purposes, two main classes of bentonite exists: Na and Ca bentonite. Among these two, calcium bentonite is one of the clay material widely used for a large number of applications.Calcium bentonite is the major mineral component of Semectite, which may usually contains quartz and mica and also, less frequently feldspar,illite,Montmorillonite,limonite,calcite, gypsum, haematite, graphite⁴.

Chemically calcium bentonite is a 2:1 layer sheet structured with one octahedrally gibbsite $[Al_2(OH)_6]$ sandwiched between two sheets of tetrahedrally coordinated silicate $[SiO_4]^4$ sheet,Its theoretical formula is $Al_2O_3.4(SiO_2).H_2O(other formula is [Si_4Al_2O_{10}(OH)_2].H_2O)$,which has a molecular weight of 360.31 gm/mol⁴.

Calcium bentonite is a useful adsorbent of ions in solution, as well as fats and oils. It is the main active ingredient of fuller's earth, probably one of the earliest industrial cleaning agents.

Bentonites have very ample and attractive properties which gives them a wide and diverse range of uses. Most importantly, Calcium bentonite has wide range of applications in the field of organic synthesis as a solid acid catalyst. The catalytic properties of Bentonites are a direct result of their high specific surface area and localization of acid center. It can catalyze many organic reactions including synthesis of Aziridines, benzimidazoles, and different aryl and alkyl esters to enhance the quality of product⁴. In addition, recently there is widespread interest in the use of surface modified clays against the dominant use of microporous zeolite acid catalysts in modern petrochemical processes, due to low cost and suitability of pore structure and dimension for cracking of larger molecule even. Different methods have been suggested in literature to improve the properties of clay materials which include among others mechano-chemical activation⁵⁻⁷, intercalation^{8,9}, thermo-chemical treatment^{10,11} and chemical activation ¹²⁻¹⁴.

Acid activation which involves treatment of the clays with inorganic acids, thus altering the chemical composition and the structure of the clays has been widely studied as a chemical treatment method for the improvement of the surface and catalytic properties of clays. The acid treatment is beneficial in terms of increased surface area, porosity and number of acid centers with respect to the parent clays. The acid treated clays are composed of a mixture of non-attacked clay layers and a hydrous, amorphous, and partially protonated silica phase that are inexpensive in different industrial uses as sorbents or as catalyst supports¹³.

Literature reveals works on the systematic examination of different clay materials prepared from mechanically and thermally amorphizedclay by acid leaching. However, a systematic analysis of the mechano chemical and thermo-chemical activation of Cabentonite withsulfuric acidis sparsely found in the literature. So, the objective of thiswork is to study the behavior of calcium bentonite clay treated with sulfuricacid under mechanical stirring and refluxing condition separately. The changes in physico-chemical properties are studied by different instrumental techniques such as XRF, XRD, FTIR, TGA,SEM and BET surface area analyzer^{13,14}.

Material and Methods

The calcium bentonite clay used in this experiment was procured from Benzenikx Pharma & Industrial Products Pvt. Ltd., Hyderabad, India. The sample was used as such without any further modification for the surface modification. The chemical composition of the sample is as follows: SiO₂ 53.02%, Al₂ O₃ 20.34%, Fe₂ O₃9.39%, MnO 0.08%, CaO 4.85%, ZnO nil, Na₂O 0.33%, TiO₂ 1.14%, P₂O₅ 0.03%, V₂O₅ 0.09% and loss on ignition 10.72%. The sulfuric acid used in this experiment was procured from Merck specialties Pvt. Ltd., Worli, Mumbai, Indiaand product name is EMPLURA Sulfuric acid. The composition of product is as follows:Assay (H₂SO₄) 95-98%, residue on ignition as sulfate \leq 0.005%, heavy metal as Pb \leq 0.001%.

Surface activation

The acid activation of calcium bentonite clay was carried out by two ways i.e, by mechano-chemical treatment and thermo-chemical treatment. In first case, the chemical activation was carried out by adding 30 g of the clay sample to 300 ml of 3N sulfuric acid solution and stirring without heating under the atmospheric pressure in a round bottom flask using a hot plate cum magnetic stirrer for 4h. In the second experiment, the chemical activation was carried out by adding 30 g of the clay to 300 ml of 3N sulfuric acid solution and refluxing at about 80°C under the atmospheric pressure in a round bottomed flask equipped with a reflux condenser for 4 h. The clay suspension obtained in both case was then rapidly quenched by adding 500 mL ice cold water. The contents of both flasks were then filtered, repeatedly washed with distilled water to remove any unspent acid, dried in an oven, calcined at 500 ° C for 1 h and ground in a mortar pastel to powder form. The untreated calcium bentonite sample is referred to as CB and treated samples are referred to as mechano-acid treated calcium bentonite (MACB) andthermo-acid treated calcium bentonite (TACB).

Characterization techniques

The original and surface modified calcium bentonite clay materials were characterized by different instrumental techniques as follows. The X-ray fluorescence spectroscopy (XRF)was carried out using a Model-PW2400 of Phillips make, with X-ray tube of rhodium anode and scintillation detector with a current 40 mA and voltage 40 mV. X-ray diffraction (XRD) of the samples were taken using Philips analytical X-ray instrument, X'PertMPD (PW 3020 vertical goniometer and PW 3710 MPD control unit) employing Bragg-Brentano para focusing optics in the range of 10-70° and scanning rate 2°/min.. Fourier transformed infrared spectroscopy (FTIR) were recorded on a Perkin-Elmer infrared spectrophotometer as KBr pellets with resolution of 4 cm^{-1} , in the range of 400–4000 cm⁻¹.Thermogravimetric analysis (TGA) andDifferential thermal analysis (DTA)were carried out with a SHIMADZU DTG-60/60H instrument at a constant heating rate of 10°C/min operating in a stream

of N₂ atmosphere with a flow rate of 40 mL/min from 35°C to 600°C. Scanning electron microscope (SEM) of the sample were taken using JEOL-JSM 5600LV microscope, equipped with a 6587 EDS (energy dispersive X-ray spectrometry) detector, using an accelerating voltage of 15 kVand sorptometricstudies were done with an autosorb BET apparatus from Quantachrome Corporation. Nitrogen adsorption–desorption measurements (BET method) were performed at liquid nitrogen temperature (-196° C). Before each measurement, the samples were out gassed first at 200°C for 2 h, at 5 × 10⁻³Torr and then at room temperature for 2h, at 0.75×10⁻⁶Torr. The isotherms were used to determine the specific surface areas using the BET equation.

Results and discussion XRF Result

The XRF analysis was carried out to know the chemical compositions of the clav and the subsequent chemical changes that occurred due to treatment. Table 1 shows the results of chemical analysis of the parent and treated calcium bentonite. The parent clay contains alumina and silica which are in major quantities where as other oxides such as manganese oxide, calcium oxide, potassium oxide, zinc oxide and titanium oxide are present in trace amounts. After the acid treatment, it was observed that the composition of the calcium bentonite changes considerably. The Al₂O₃, Fe₂O₃, and CaO contents decreased and SiO₂ content increased in the acid treated calcium bentonite. According to literature, the reaction between calcium bentonite and sulphuric acid is described by the chemical equation. From the reaction it conclude that during leaching process, Al₂O₃, Fe₂O₃and CaO react with sulphuric acid solution produces sulphates which are soluble in water and due to this fact, the amount of alumina and iron (III)oxide contents decrease during thermochemical process. Similarly, CaO, which under goes acidification, soluble as CaSO₄ in water and completely wash out during thermo-chemical process. But silica content increases due to makeup the deficiency of alumina and some trace elements.

 $\begin{array}{lll} Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 2SiO_2 + 5H_2O \\ Fe_2O_3 &+ & 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O \\ CaO + &H_2SO_4 \rightarrow CaSO_4 + H_2O \end{array}$

It can be observed that the concentration of ZnO, MnO, V_2O_5 , P_2O_5 remained almost unchanged with acid reagent. The extent of leaching depends on the type of treatment (mechano-chemical/thermo-chemical). For example, with 3N H₂SO₄treatment with mechanical stirring and heating, the Al₂O₃ content decreased from 20.34 to 17.40% and 15.34% respectively, whereas the SiO₂content increased from 53.02 to 57.52% and 65.04% respectively. Thus the Si/Al ratio of the calcium bentonite treated with acid increases in the same trend. The leaching process is more extensive as

compared to mechanical stirring. The XRF study clearly indicated that leaching occurred in a sequential manner due to attack at tetrahedral layer resulting in the dealumination f clay due to reaction with acid along with mechanical stirring and supply thermal energy¹³⁻¹⁵.

Table 1: XRF analysis of calcium bentonite

Tuble If The unurysis of curchain sentomic						
Components (%)	СВ	MACB	TACB			
Al_2O_3	20.34	17.40	15.34			
Fe ₂ O ₃	9.39	7.71	4.65			
TiO ₂	1.14	1.27	1.26			
SiO ₂	53.02	57.52	65.04 0.36			
Na ₂ O	0.33	0.35				
CaO	4.85	3.65	0.00			
P_2O_5	0.03	0.03	0.03			
V_2O_5	0.09	0.09	0.09			
ZnO	0.00	0.00	0.00			
MnO	0.08	0.08	0.08			
LOI	10.72	11.90	13.15			

XRD Result

The structural changes that occurred in the clay material due to acid treatment were studied using X-ray diffraction technique.Figure1 shows the XRD profiles of the CB, MACB, TACB. The parent clay shows welldefined reflections at 2θ value of 30° , which correspond to the reflections from $[0 \ 0 \ 1]$, which is typical characteristic peak of calcium bentonite. Again the peaks corresponding to the 2θ value $8-10^{\circ}$, 12- 15° , 20-24°, and 25-32° may vary for calcium bentonite from different origin. Upon acid treatment the peak intensity of the clay was found to decrease progressively. This is due to the structural disorder that occurred owing to the acid treatment, which affects the crystalline character of the clay. Again upon thermochemical treatment the peak intensity of the clay was found to be furtherdecreased as compared tomechano acid treatment and disorderliness of structure occurredi.e.. crystalline structure changed to amorphous form.

Figure 1: XRD analysis of different calcium bentonites

The narrowing of the peak may be related to the increase of crystallite size and/or the decrease of the mean lattice strain. It was observed that the calcium bentoniteclay treated with 3N sulphuric acid with mechanical stirringdoes not show any well-defined peak at 2θ value of 30° but a narrow peak shifted to 2θ value 28° in the X-ray diffractograms. Similar observation was found in case of thermo-acid treatment where it show narrow peak at 2θ value of 26° . The shifting of peaks occur in both the case with respect to CBensures the structural changesfrom crystalline to amorphous.Since leaching is quite severe in thermo-acidic treatment, more shifting of peak was observed in this case¹³.

FTIR Result

The FTIR spectrums of different calcium bentonite samplesare shown in Figure 2 (a,b,c) and the corresponding band assignments are shown in Table 2. In the O-H stretching region, the parent and acid treated clay shows three prominent bands at 3429, 3435, 3437 and 3580 cm⁻¹ corresponds to Al-OH stretching. Inner hydroxyl groups, lying between the tetrahedral and octahedral sheets give the absorption at 3429 cm⁻¹. A strong band at 3435 cm⁻¹and 3437 cm⁻¹ is related to the in phase symmetric stretching and . The band observed at 3429 cm⁻¹, assigned to the high amount of water physisorbed on the surface of the clay. There was not much variation in the peak pattern for acid treated and thermo-chemical treated calcium bentonite.

For the 3N H₂SO₄ treated CB the structural hydroxyl vibration band is extremely weak. In the bending region mode, the clay materials show a series of IR bands with peak maxima at 1638, 1630, 800, 675 and 614cm⁻¹. The peak at 1630 cm⁻¹ is quite intense is attributed to the bending vibration (H-O-H _{bend}) mode of physisorbed water on the surface of free silica produced due to leaching. This peak was found to be absent in case of the acid treated clay due to structural disintegration. The IR peaks at 595, 1026 and 3435 cm⁻¹ can be assigned to the Si-O-Al, Si-O_{str} and Al-O-H vibration of the clay sheet. The high intense 800 cm⁻¹ peak due to vibrations of inner OH groups was found to be drastically reduced for 3N H₂SO₄ treated clay.

 Table 2:Important IR bands of calcium bentonite

 clay with their possible assignments

Band (cm ⁻¹)	Assignments	
3429	Al–O–H _{str} (physisorbed water)	
3435,	Al–O–H _{str} (structural hydroxyl	
3437, 3580	groups, octahedral)	
1630	H–O-H _{bending} (physisorbed)	
873	Al–Al–OH _{str}	
1026, 800	Si–O _{str}	
755	Si–O–Al _{str}	

	614, 595	Si–O _{str} ,	Si-O-	-Al _{str}			
It	can be con	ncluded	that,	the	thermo	-chem	nical
tı	reatment i.e, o	lealumina	ation	proces	s is t	facilit	ated
ra	apidly, during	acid trea	tment	, beca	use of	this	fact
a	lumina content	decreased	1. Aga	in wel	l resolv	ed str	ong
b	ands in the 10	50-1000	cm^{-1}	region	is due	e to S	Si-O
S	tretching in	untreated	d cal	cium	bento	nitew	hich
c	hanged in sha	ipe and	positi	ion du	ue to	struct	ural
c	hanges in the te	trahedral	cation	s. The	FTIR r	esult	is in
c	lear agreement	with the	XRF :	studies	which	indic	ates
S	equential degra	dation o	f the	clay s	sheet u	ipon	acid
tı	reatment along	with mee	chanic	al stirı	ring an	d the	mal
h	eating ^{13,14,16} .						

Figure 2 (a): FTIR of different CB

Figure2 (b): FTIR of different CB

Figure 2(c): FTIR of different CB

TGA result

The TGA curves (Figure 3) of the pure, mechano-acid treated and thermo-acid treated calcium bentonite show two well-defined weight loss regions due to the loss water (below 200°C) ofphysisorbed and dehydroxylation of coordinatedand structural water (above 450°C). In general, clay materialscontain three kinds of water molecules in their structure. Thephysisorbed and interlayer water are loosely bound and are mobilethat they can be removed by heat treatment below 200°C. Thewater molecule present in the first coordination sphere of the interlayerions is strongly bonded and they require higher temperaturein the range of 300-500°C for their removal. Finally the structuralhydroxyl groups can condense and dehydrate in the temperature range of 500-800°C. In the present study, the low temperaturewater loss can be assigned to the physisorbed water, whereasthe high temperature is to the weight loss due dehydration anddehvdroxylation of the clay sheet. Comparing the TGA profile of the parent and the mechano-acid treated clay; it was observed that acid treatmentincreased the amount of physisorbed water. This may be due to the fact thatacid treatment increased the amount of amorphous silica and alsosurface area which made the water adsorption higher. In the hightemperature weight loss regions however, the percentage loss islower for acid treated clay as compared to the parent clay. This isdue to the removal of the octahedral Al ions along with the concurrentremoval of structural hydroxyl groups due to acid treatment. Following TGA analysis shows that about 96.94% weight was obtained at 115.5°C in the case of untreated calcium bentonite whereas about 95.5% weight was obtained at 106.23°C in the case of mechano-acid treated calcium bentonite. But in case of thermo-acid treated calcium bentonite, about 94.72% weight was obtained at 105.62 °C. From the above data it is concluded that rate of weight loss is more in case of mechano-acid treated and further increased in thermos-acid treated calcium bentonite as compared to untreated calcium bentonite ^{13, 14}.

Figure 3: TGA analysis of calcium bentonite

SEM Result

The scanning electron micrographs of the different calciumbentonite claysamples are presented in Figure 4[(a),(b),(c)]which shows the morphological features. The SEM micrograph of CB reveals the presence oflarge particles that appeared to have been formed by severalflaky particles stacked together in form of agglomerates. The SEMimages of CB, acid treated CB.thermal and acid treated CB show different particlemorphology. The micrograph ofCB(a)indicate that the particles are arranged in disaggregate or distinct manner whereas the micrograph of acid treated CB(b) shows that the particles are well-bonded and becomes agglomerate. Then the SEM micrograph of thermal and acid treated CB(c) indicates that, by thermo-chemical treatment the agglomeration of particles become increase rather than detached particles and well-bonded than $(c)^{15}$.

Figure 4: (a) SEM of CB (b) SEM of MACB 4 (c) SEM of TACB

BET Surface area Result

According to BET theory, physical adsorption of gas molecules on a solid surface in a given pressure allows to determine the surface area. BET surface area increased with increasingacid strength, which is summarised in Table 3. Upon 3N sulphuricacid treatment by mechanical stirring, the surface area of the original clayincreased from 146 to $193m^2/g$ and with thermo- acid treatmentthe surface area increased to $290m^2/g$ which is about two times greater than the untreated calcium bentonite. As the surface area increased with acid treatment either by mechanochemically or by thermo-chemically, the reactivity of catalysts increase as well as catalytic/chemical reaction becomes faster than original.

 Table 3: BET surface area analysis of calcium bentonite

Catalyst	Surface area m ² /g
CB	146
MACB	193
TACB	290

Conclusion

In this work, we have studied the effect of the sulphuric acid with mechanical stirring and thermal refluxing condition on the structural and chemical properties of calcium bentonite clay. The changes observed in this treatment were more prominent in thermo-acidic condition than mechano-acidic condition.

- The XRF and SEM studies indicated clearly the leaching and disintegration of the clay sheet upon thermo-chemical treatment. XRD studies of the acid treated clay indicated the structural transformation of the clay sheet upon acid treatment. The pure clay is crystalline, whereas the crystallinity and the interlayer structure of the clay material were found to be altered with acid treatment and became amorphous.
- On acid treatment, Al₂O₃, TiO₂and Na₂O contents in the acid treated material decreased progressively simultaneously increasing the SiO₂ content.
- FTIR study of the acid treated clay shows the presence of several kinds of structural OH groups whose peak position and intensity changes with increase in acid concentration. Acid treatment did not causemuchvariation in the peak pattern. However thermo-acid treatment in same acid strength the peak intensity was found to decrease progressively and indicating the dehydroxylation and successive leaching of the Al ions from the octahedral layer. Since the OH groups play a predominant role in clay catalysis, the acid treatment may be beneficial in terms of generation of new acidic sites.
- Again, the BET surface area analysis of the samples indicated the increase in surface area with acid

treatment and further increased with thermo-acidic treatment.

Thus, this method can be useful for manufacturing a surface active and high surface area material which can be used for catalyst as well as an adsorbent.

References

- 1. Guido B., Acid catalysts in industrial hydrocarbon chemistry, *Chem. Rev.*, **107**(11): 5366 (2007)
- Corma A., Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, *Chem Rev.*,95(3): 559 (1995)
- Gopalpur N., Organic synthesis using clay and clay-supported catalysts, *Applied Clay Science*, 53: 106–138 (2011)
- 4. www.market izer.com. Uses and application of bentonite. Quiminet. (2012)
- Dragsdorf R.D., Kissinger H.E. and Perkins A.T., An X-ray study of the decomposition of kaolinite, *Soil Science*, **71**: 439 (**1951**)
- Gregg S.J., Parker T.W. and Stephens M.J., The grinding of kaolinite: II. *J. Appl. Chem.* (London), 4: 666 (1954)
- Temuujin J., Burmaa G., Amgalan J., Okada K., JadambaaTs. and MacKenzie K.J.D., Preparation of porous silica from mechanically activated kaolinite, *J. Porous Mater.*, 8: 233 (2001)
- 8. Ledoux R.L. and White J.L., Infrared studies of hydrogen bonding interactions between kaoline surface and intercalated potassium acetate, hydrazine, formamide and urea, *J. Colloid Interface Science*, **21**:127 (**1966**)
- Horvath E., Kristof J., Frost R.L., Jakab E., Mako E. and Vagvolgyi V., Identification of super active centers in thermally treated formamide–intercalated kaolinite, *J. Colloid Interface Science*, 289:132 (2005)
- LussierR.J., A novel clay-based catalytic material—preparation and properties, *J. Catalyst*, 129: 225–237 (1991)
- 11. Chaisena A. andRangsriwatananon K.,Effect of thermal and acid treatment on some physico-chemical properties of lamping diatomite,*J. Science Technology*, **11**: 289 (**2004**)
- 12. Rhodes C.N., Franks M., Parkes G.M.B. and Brown D.R., The effect of acid treatment on the

activity of clay supports for ZnCl₂ alkylation catalysts, *J. Chem. Soc. Chem. Communication*, **12:** 804 (**1991**)

- 13. Panda A.K., Mishra B.G., Mishra D.K. and Singh R.K., Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay, *Colloids and Surfaces A: Physicochem. Eng. Aspects*, **363**, 98 (**2010**)
- 14. Kumar S., Panda A.K. and Singh R.K., Preparation and characterization of acids and alkali treated kaolin clay, *Bulletin of Chemical Reaction Engineering & Catalysis*, **8**:61 (2013)
- Nascimentoa A.R., Alves J.A.B.L.R., Meloa M.A.F., Melob D.M.A., Souzad M.J.B. and Pedrosae A.M.G., Effect of the Acid Treatment of Montmorillonite Clay in the Oleic Acid Esterification Reaction, *Materials Research*, 18: 283 (2015)
- 16. Miller F.A., Wilkins C. H., Infrared Spectra and Characteristic Frequencies of Inorganic Ions.*Analytical Chemistry*, **24**: 1253 (**1952**).