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Abstract: This study investigates the removing of Cu(II)  using Pleurotus ostreatus fungal and Pleurotus ostreatus 

spent mushroom compost. In these batch biosorption experiments, the half saturation constant of biosorption was 

determined through Langmuir Linearization 1 plot of biosorbent concentration. This new approach was employed 

to minimize the use of biosorbent and to obtain results in shorter time. The half saturation constant of Cu(II) 

biosorption was 0.36 g for fungal Pleurotus ostreatus and 0.7 g for Pleurotus ostreatus spent mushroom 

substrate. There were three optimum operational parameters undertaken, which were the initial pH of 6, contact 

time of 10 minutes and 50 mg/L of initial Cu(II) concentration. These parameters were found to have produced 

results that clearly fitted the Langmuir and Freundlich isotherms, which also matched the pseudo second-order 

kinetic better than they do pseudo first-order kinetic. These implied that chemisorptions, complexation and ion 

exchange play a vital role in biosorption mechanism. In the same vein, the results of the FTIR analysis showed 

that the carboxyl, hydroxyl and amide group of lignocelluloses, chitin and proteins could be hypothesized that 

they were the functional groups involved in Cu(II) biosorption, in keeping with the findings shown by the said 

isotherms. Therefore, these biosorbents deem to be highly potential to be developed into a low impact, 

environment-friendly sustainable technology to remove heavy metals. 
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Introduction 
Industrialization has resulted in contamination 

through production of chemicals, inappropriate use, improper 

disposal and accidental leakage of these chemicals. The 

accumulation of heavy metals in food chain has given rise to 

concern because they are persistent and toxic in the 

environment as well as mutagenic and carcinogenic to human 

health. Precipitation of heavy metals in hydroxide is the most 
common practice for heavy metals removal in Malaysia. 

However, this conventional method is not environmental 

friendly due to production of toxic waste and overuse of 

chemicals. Therefore, recent research on sustainable 

technology such as biosorption for heavy metals removal has 

been explored enthusiastically. 

 

Biosorption is developed as an alternative method and 

sustainable technology for heavy metals removal. It is a 

physio-chemical passive metabolite independent process by 
deploying biosorbent from non-living biological materials, 

especially agricultural or industrial waste. In general, 

biosorbent is bio-degradable, heavy metals are easily eluted by 

diluted acid from regeneration process thus converting waste to 

wealth. 

 

Biosorbent of fungal Pleurotus ostreatus [1, 2] and 

sawdust [3, 4, 5] are promising biosorbents in heavy metals 

removal. Chen et al. [6] also reported that Lentinus edodes spent 

mushroom compost has high heavy metals removal capacity. 

Fungal Pleurotus ostreatus and Pleurotus ostreatus spent 

mushroom compost (PSMC) are selected biosorbents in this 
study. At present, there is lack of research in selecting the 

PSMC as biosorbent. In addition, it was found that very few 

competitive studies of PSMC with other related biosorbent 

such as Pleurotus ostreatus.  
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Economically, using large amount of easily available 

waste from mushroom cultivation farm could make a crucial 

contribution in enhancing the sustainable technology 

development by offering an effective biosorbent to remove 

heavy metals. Meanwhile, it also minimizes waste management 

problems of mushroom cultivation farm thus transforming 
waste to wealth. 

 

This study investigates the feasibility of fungal 

Pleurotus ostreatus and PSMC as biosorbents. The maximum 

Cu(II) biosorption performance and mechanism of Cu(II) 

biosorption were evaluated in order to establish an alternative 

sustainable technology. 

 

Material and Methods  
Preparation of biosorbent and Cu(II) solution: The 15-day 

old Pleurotus ostreatus mycelium culture in malt extract was 

harvested and autoclaved for 15 minutes at 121 oC, 18 psi. 

After drying in an oven at 60 oC until constant weight was 

obtained, it was ground and sieved to particle size of 150 µm 

and kept in a drying cabinet.   

 

Sample of PSMC was collected from C and C 

mushroom Cultivation Farm Sdn. Bhd.. After that, it was 
autoclaved and dried in an oven at 60 oC until the constant 

weight was attained. It was then ground and sieved to particle 

size of 710 µm. This sample was rinsed three times with ultra 

pure water in ratio of 20g/ L to remove impurities. Finally, 

prepared biosorbent was kept in a drying cabinet.  

 

Analytical grade Cu(SO4) (Merck, Germany) was 

diluted with ultra pure water for Cu(II) solution preparation. 

 

Batch biosorption  

In batch biosorption experiments, specific amounts of 
biosorbents were added into 50 L of 50 mg/L Cu(II)  solution 

respectively. Then, the samples were incubated in an incubator 

shaker for an hour under 125 rpm and temperature of 25 ± 1 
oC. After filtration, supernatants were analyzed using ICP-OES 

(7300DV, Perkin Elmer, USA).  

 

All biosorption tests were performed in duplicates 

with error bars corresponding to ±1 standard deviation value 

for data analysis. The expressed values represent the average of 

the acquired results with 1 SD. The effectiveness of biosorbent 

was calculated from Equation 1. 

 
(1) 

 

 

where qe = equilibrium Cu(II) biosorption uptake (mg/g), Co 

and Ce = initial and final Cu(II) concentration (mg/L), V = 

volume of Cu(II) solution (L) and M = weight of biosorbent (g) 

 

The experimental results were fitted to the linearized 

Langmuir and Freundlich isotherm Model as shown in 

Equation 2 and 3 respectively.  
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where qe = equilibrium Cu(II) biosorption uptake (mg/g), qmax 

= maximum Cu(II) biosorption uptake (mg/g), Ce = Cu(II) 

concentration at equilibrium (mg/L), b = Langmuir constant, 

KF and  n = Freundlich constant.  

 

The Cu(II) biosorption were calculated from the 

pseudo first-order kinetic model (Equation 4) and second-order 

kinetic models (Equation 5). 

303.2
loglog

1
tk

qqq
ete

    (4) 

eet
q

t

qkq

t

2

2

1     (5)

  

where qe and qt = Cu(II) biosorption uptake at equilibrium and 

at time (mg/g), t = time (min), k1 and k2 = constant of pseudo 

first-order and second-order kinetic. 

 

Fourier Transform Infra-Red Analysis  

The specific functional groups of biosorbents were 

identified using Fourier Transform Infra-Red (FTIR) 

Spectroscopy System (Series 100, Perkin Elmer, USA) 

 

Results and Discussion 
Cu (II) removal was investigated in this study using 

two types of biosorbents, namely, Pleurotus ostreatus and 

PSMC. Optimization parameters of initial pH, contact time 

and initial Cu(II) concentration were examined in order to 

evaluate biosorption performance and design of the half 

saturation constant biosorbent concentration. Functional 
groups involve in Cu(II) removal were characterized using 

FTIR.   

 

Biosorbent concentration: Figure 1 shows Cu(II) biosorption 

uptake for Pleurotus ostreatus and PSMC decreased when 

biosorbent concentration increased. This indicated that the 

ratio of Cu(II) ions to surface active sites decreased and 

resulted in partial aggregation.  

 

Therefore, uptake of Cu(II) biosorption had reached 

limitation and decreased. Jiang et al. [7] also reported similar 
observation in Cu(II) biosorption by modified bagasses. 

 

 
Figure 1: Effect of biosorbent concentration on Cu (II) 

removal 
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The half saturation constant of Cu(II) biosorption was 

determined by Langmuir Linearization 1 plot of biosorbent 

concentration. From the slope and intercept calculation as 

shown in Figure 2, the half saturation constant of Cu(II) 

biosorption was 0.36 g for Pleurotus ostreatus and 0.7 g for 

PSMC. These biosorbent concentration were selected for 
further experiments in order to obtain results in shorter time 

and minimize usage of biosorbent.  

 

 
Figure 2: Langmuir Linearization 1 plot of Hanes-Woolf 

plot for half saturation conatant determination 

 

Initial pH: The Cu(II) biosorption is a pH dependent process 

as shown in Figure 3. The maximum Cu(II) uptake was found 

to be at pH 5 for both fungal derived biosorbents of Pleurotus 
ostreatus and PSMC. The poor uptake of Cu(II) biosorption at 

low pH suggests that protons occupy most of the active sites 

on biosorbent surface and active sites are being protonated. 

Consequentially, electric repulsion formed and resulting in 

reduced of Cu(II) biosorption uptake. As initial pH increase, 

the active sites are being deprotonated and strengthened the 

charge attraction, thus leading to significant increase in Cu(II) 

biosorption uptake. While at highly basic condition, the 

availability for Cu(II) biosorption is attributed to precipitation 

of Cu(II) ions as insoluble hydroxides or hydrated oxides. In 

this regards, Božić et al. [8] recorded similar trend and same 
order of magnitude for maximum Cu(II) biosorption which 

was based on sawdust of deciduous trees.  

 

 

 
Figure 3: Effect of initial pH on Cu(II) removal 

 

The active sites and Cu(II) species are affected by 
initial pH, thus influence the biosorption performance. For 

subsequent experimental design, initial pH was not adjusted 

since Cu(II) solution has the initial pH of 5 which represent 

the optimum condition of Cu(II) biosorption uptake. 

 

Contact time: Figure 4 illustrates the Cu(II) biosorption 

uptake occurring in two phases. A rapid and significant Cu(II) 

biosorption uptake phase and then follow by an equilibrium 
phase. Both Pleurotus ostreatus and PSMC biosorbents 

achieved equilibrium phase within 10 minutes. This revealed 

that microporous surface of biomaterial facilitates the 

diffusion process and surface active sites are easily occupied 

by Cu(II) ions. By applying the half saturation constant 

approach in biosorption, the equilibrium time could be 

achieved faster as well as minimize biosorbent usage. Table 1 

shows this study attained equilibrium phase faster than other 

researchers who utilized biosorbent concentration at 

equilibrium stage or random selection. Based on present 

result, 10 minutes equilibrium time was adopted in designing 
subsequent experiments. 

 

 
Figure 4: Effect of contact time on Cu (II) removal 

 

Initial Cu(II) concentration : Figure 5 depicts the Cu(II) 
biosorption uptake increased linearly when initial Cu(II) 

concentration increased, with co-efficient of 0.9598 for 

Pleurotus ostreatus and 0.9920 for PSMC biosorbent. The 

initial Cu(II) concentration provides a driving force to 

overwhelm mass transfer resistances of the Cu(II) ions between 

the aqueous and solid phase. Findings from the flower 

distillation sludge [14] and barley straw [15] biosorbents were 

consistent with this study. 

 

 
Figure 5: Effect of initial Cu(II) concentration on Cu(II) 

removal 
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Langmuir and Freundlich isotherm model: The calculated 

Langmuir and Freundlich isotherm parameters are summarized 

in Table 2. The biosorption data fit the Langmuir and 

Freundlich model, judging by its coefficient value. These 

fitting deduced that biosorption is governed by the monolayer 
heterogeneous chemisorptions mechanism.  

Therefore, there is no further binding process at active sites, 

once it is being occupied. It seemed that other research also 

rely on chemisorption for Cu(II) removal as fitted to Langmuir 

Isotherm.  

Furthermore, this study exhibits comparable 

predicted qmax values for Cu(II) biosorption uptake if 
compared to other. 

 

 

Table 1 

Comparison of contact time for Cu (II) biosorption  

 

Biosorbent Contact time for equilibrium phase Reference(s) 

Treated leave powder 30 minutes Kilic et al. [9] 

Cassia angustifolia tree bark 120 minutes Mulgund et al. [10] 

Treated rubber leaves powder 120 minutes  Ngah and Hanafiah [11] 

Alga, moss, sawdust 60 minutes Grimm et al. [12] 

Tree leave of U. carpinifolia and F. excelsior 60 minutes Sangi et al. [13] 

Fungal Pleurotus ostreatus, PSMC 10 minutes This study 

 

Table 2 

Langmuir and Freundlich parameters for Cu (II) biosorption and comparison with other recent studies 

 

Biosorbent 
Langmuir Parameters Freundlich Parameters 

qmax (mg/g) b R
2
 KF n R

2
 

Wheat straw [16] 0.18 1.91 0.920 0.11 0.31 0.910 

Modified mangrove bark [17]  5.80 0.03 0.936 0.22 1.38 0.999 

Fungus on corncob [18] 1.77 0.001 0.882 0.00002 0.59 0.911 

Fungal Pleurotus ostreatus (This study) 3.59 0.16 0.990 0.08 2.50 0.985 

PSMC (This study) 3.87 0.02 0.966 0.12 1.32 0.996 

 

Table 3 

Pseudo first-order and second-order kinetic parameters for Cu (II) biosorption and comparison with other related 

biosorbents 

Biosorbent 
Pseudo first-order Pseudo second-order 

qe k1 R
2
 qe k2 R

2
 

Chestnut shell [19]  1.17 0.014 0.771 4.44 0.08 0.997 

Papaya wood [20] 1.72 0.074 0.884 1.99 0.04 0.993 

Fungal Pleurotus ostreatus (This study) 0.27 0.036 0.430 3.20 3.13 0.999 

PSMC (This study) 0.08 0.002 0.023 1.44 31.7 0.999 

 

Pseudo first-order and second-order kinetic model: Table 3 

lists the parameters of pseudo first-order and second-order 

kinetic model. Experimental data excellently fitted the pseudo 

second-order compared to pseudo first-order. This infers that 

there are more than one mechanisms occurring simultaneously 

during the Cu(II) biosorption process. The pseudo second-

order kinetic model also corresponded to chemisorption with 
limit on involving the valency force through sharing or 

exchange of electrons. Increasing Cu(II) concentration seems 

to reduce the external diffusion of the biosorbate and enhances 

intra-particle diffusion. The kinetic parameters obtained are in 

accordance with those found in the literature [19-20]. 

 

FTIR analysis :FTIR spectrum with several intense 

characteristic bands with functional groups that present in 

lignocelluloses, chitin and proteins were illustrated in Figure 

6. Generally, hydroxyl, carboxyl and amide groups were three 

identified active sites for Cu(II) biosorption. This result is 

supported by observation of Cu(II) biosorption occurring at 

pH below 4 in Figure 3 which indicates the possible presence 
of hydroxyl and amide groups as active sites besides carboxyl 

group. This three identified functional groups also supported 

the Freundlich isotherm model of heterogeneous surface active 

sites. Javaid et al. [2] and Zakaria et al. [5] noted similar 

functional groups in their study of Pleurotus ostreatus and 

rubber tree sawdust, respectively.  
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Figure 6: FTIR spectra of Pleurotus ostreatus and PSMC 

before and after Cu (II) removal 

 

It is well established that Pleurotus ostreatus contains 

chitin molecules in its cell wall. The three identified groups of 

hydroxyl, carboxyl and amide, are some of the main 

constituent of N-acetylglucosamine, which is a monomer unit 

of the chitin. The oxygen ring and the hydroxyl groups of N-
acetylglucosamine play a pivotal role in binding with Cu(II) 

via complexation process. Tay et al. [21] drew the conclusion 

that all these functional groups are major contributors in chitin-

heavy metals complex. 

 

The Cu(II) biosorption process is mainly accounted 

for ion exchange with potassium (K) for Pleurotus ostreatus 

and calcium (Ca(II)) for PSMC. A significant release of such 

light metal ions were observed through ICP-OES and 

SEM/EDX after Cu(II) biosorption. These collected data 

inferred that the displacement of K ions of Pleurotus ostreatus 

and Ca(II) ions of PSMC by Cu(II) ions. These further 
supported that hydroxyl, carboxyl and amide groups from 

lignocelluloses, chitin and proteins play a vital role in ion 

exchange mechanism. Similar phenomenon involving olive oil 

stone biosorbent was stated by Foil et al. [22]. 

 

Conclusion 
Pleurotus ostreatus and PSMC were evaluated as 

biosorbents through Cu(II) biosorption performance. In batch 

study, the half saturation constant of biosorption was 

determined in order to obtain results in shorter time and 

minimize biosorbent usage. The half saturation constant of 

Cu(II) biosorption was found at 0.36 g and 0.7 g for Pleurotus 

ostreatus and PSMC respectively. The optimum operation 

parameters for both biosorbents were similar, which were 

initial pH of 5, 10 minutes contact time and 50 mg/L initial 

Cu(II) concentration. These experimental data were well fitted 

to Langmuir and Freundlich isotherm model. Pseudo second-
order kinetic superbly described Cu(II) biosorption if 

compared to pseudo first-order kinetic model.  

 

Carboxyl, hydroxyl and amide groups of 

lignocelluloses, chitin and proteins were identified as 

functional groups in Cu(II) biosorption. Chemisorption, 

complexation and ion exchange were Cu(II) biosorption 

mechanisms and were confirmed by the isotherm and kinetic 

fittings. The PSMC biosorbent has comparable effectiveness 

and advantages of easily and abundantly available in Malaysia 

compared to Pleurotus ostreatus. Therefore, PSMC biosorbent 
has higher potential to be developed into an environment-

friendly sustainable technology for purification of heavy 

metals laden effluents as well as reduce solid waste 

management problems related to mushroom cultivation farm. 
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